4J29可伐合金
4J29
材料牌号:4J29精密合金
一、4J29精密合金概述:
4J29合金又称可伐(Kovar)合金。该合金在20~450℃具有与硅硼硬玻璃相近的线膨胀系数,居里点较高,并有良好的低温组织稳定性。合金的氧化膜致密,能很好地被玻璃浸润。且不与汞作用,适合在含汞放电的仪表中使用。是电真空器件主要密封结构材料。
1、4J29材料牌号: 4J29。
2、4J29相近牌号: 见表1-1。
表1-1[1~4]
俄罗斯 |
美国 |
英国 |
日本 |
法国 |
德国 |
29HК |
Kovar |
Nilo K |
KV-1 |
Dilver P0 |
Vacon 12 |
29HК-BИ |
Rodar
Techallony Glasseal 29-17 |
Telcaseal |
KV-2 KV-3 |
Dilver P1 |
Silvar 48 |
3、4J29材料的技术标准:
4、4J29化学成分: 见表1-2。
表1-2 %
C≤ |
Si≤ |
Mn≤ |
P≤ |
S≤ |
Cr≥ |
Ni≥ |
Mo≥ |
Cu≤ |
0.03 |
0.30 |
0.50 |
0.020 |
0.020 |
- |
28.5-29.5 |
- |
0.20 |
其他 |
Al≤ |
Ti≤ |
Fe≤ |
Co≤ |
V≤ |
W≤ |
Nb≤ |
N≤ |
- |
- |
余量 |
16.8-17.8 |
- |
- |
- |
|
在平均线膨胀系数达到标准规定条件下,允许镍、钴含量偏离表1-2规定范围。铝、镁、锆和钛的含量各不大于0.10%,其总量应不大于0.20%。
5、4J29热处理制度:标准规定的膨胀系数及低温组织稳定性的性能检验试样,在氢气气氛中加热至900℃±20℃,保温1h,再加热至1100℃±20℃,保温15min,以不大于5℃/min速度冷至200℃以下出炉。
6、4J29品种规格与供应状态:品种有丝、带、板、管和棒材。
7、4J29熔炼与铸造工艺:用非真空感应炉、真空感应炉或电弧炉熔炼。
8、4J29应用概况与特殊要求:该合金是国际通用的典型的Fe-Ni-Co硬玻璃封接合金。经航空工厂长期使用,性能稳定。主要用于电真空元器件如发射管、振荡管、引燃管、磁控管、晶体管、密封插头、继电器、集成电路的引出线、底盘、外壳、支架等的玻璃封接。在应用中应使选用的玻璃与合金的膨胀系数相匹配。根据使用温度严格检验其低温组织稳定性。在加工过程中应进行适当的热处理,以保证材料具有良好的深冲引伸性能。当使用锻材时应严格检验其气密性。
二、4J29物理及化学性能:
1、4J29热性能:
(1)、4J29溶化温度范围:该合金溶化温度约为1450℃[1,2]。
(2)、4J29热导率: 见表2-1。
表2-1[1]
θ/℃ |
100 |
200 |
300 |
400 |
500 |
λ/(W/(m·℃)) |
20.6 |
21.5 |
22.7 |
23.7 |
25.4 |
(3)、4J29比热容: 在0℃时,比热容为440J/(kg•℃);在430℃时,比热容为649J/(kg•℃)。
(4)、4J29线膨胀系数: 标准规定α1(20~400℃)=(4.6~5.2)×10-6℃-1;α1(20~450℃)=(5.1~5.5)×10-6℃-1(当用于晶体管时上限为5.6×10-6℃-1)。合金的平均线膨胀系数见表2-2。合金的膨胀曲线见图2-1。
2、4J29密度:
3、4J29电性能:
(1)、4J29电阻率:ρ=0.48μΩ·m[1,5]。
4J29可伐合金表2-2[1]
θ/℃ |
/10-6℃-1 |
θ/℃ |
/10-6℃-1 |
20~60 |
7.8 |
20~500 |
6.2 |
20~100 |
6.4 |
20~550 |
7.1 |
20~200 |
5.9 |
20~600 |
7.8 |
20~300 |
5.3 |
20~700 |
9.2 |
20~400 |
5.1 |
20~800 |
10.2 |
20~450 |
5.3 |
20~900 |
11.4 |
(2)、4J29电阻温度系数:见表2-3。
表2-3[1]
温度范围/℃ |
20~50 |
20~85 |
20~100 |
20~200 |
20~300 |
20~400 |
αR/10-3℃-1 |
3.7 |
3.7 |
3.9 |
3.9 |
3.7 |
3.3 |
4、4J29磁性能:
(1)、4J29居里点: Tc=430℃[1,5]。
(2)、4J29合金的磁性能:见表2-4[1]。
在4000A/m下,剩余磁感应强度Br=0.98T,矫顽力Hc=68.8A/m[1,2]。
5、4J29化学性能:合金在大气、淡水和海水中有较好的耐腐蚀性。
表2-4[1,2]
H/(A/m) |
B/T |
H/(A/m) |
B/T |
H/(A/m) |
B/T |
8 |
0.9×10-2 |
80 |
0.35 |
2000 |
1.47 |
16 |
2.1×10-2 |
160 |
0.81 |
4000 |
1.61 |
24 |
3.6×10-2 |
400 |
1.17 |
|
|
40 |
8.3×10-2 |
800 |
1.34 |
|
|
三、4J29力学性能:
1、4J29技术标准规定的性能:
(1)、4J29硬度: 深冲态带材的硬度应符合表3-1的规定。厚度不大于0.2mm时不作硬度检验。
(1)、4J29抗拉强度: 丝材和带材的抗拉强度应符合表3-2的规定。
表3-1
状态 |
δ/mm |
硬度HV |
深冲态 |
>2.5 |
≤170 |
≤2.5 |
≤165 |
表3-2
状态代号 |
状态 |
σb/MPa |
丝材 |
带材 |
R |
软态 |
<585 |
<570 |
1/4I |
1/4硬态 |
585~725 |
520~630 |
1/2I |
1/2硬态 |
655~795 |
590~700 |
3/4I |
3/4硬态 |
725~860 |
600~770 |
I |
硬态 |
>850 |
>700 |
2、4J29室温及各种温度下的力学性能:
(1)、4J29硬度: 冷应变率为50%的带材,在不同退火温度下的硬度见图3-1。
(2)、4J29拉伸性能:合金(退火态)在室温的拉伸性能见表3-3。冷应变率为50%的带材,在不同退火温度下的拉伸性能见图3-2。
表3-3[1,5]
σb/MPa |
σP0.2/MPa |
δ/% |
520 |
330 |
30 |
3、4J29持久和蠕变性能:
4、4J29疲劳性能:
5、4J29弹性性能:4J29弹性模量: E=138GPa。
四、4J29组织结构:
1、4J29相变温度:γ→α相变温度在-80℃以下。
2、4J29时间-温度-组织转变曲线:
3、4J29合金组织结构:合金按1.5规定的热处理制度处理后,再经-78.5℃冷冻,大于等于4h不应出现马氏体组织。但当合金成分不当时,在常温或低温下将发生不同程度的奥氏体(γ)向针状马氏体(α)转变,相变时伴随着体积膨胀效应。合金的膨胀系数相应增高,致使封接件的内应力剧增,甚至造成部分损坏。影响合金低温组织稳定性的主要因素是合金的化学成分。从Fe-Ni-Co三元相图中可以看到,镍是稳定γ相的主要元素,镍含量偏高有利于γ相的稳定。随合金总变形率增加其组织越趋向稳定。合金成分偏析也可能造成局部区域的γ→α相变。此外晶粒粗大也会促进γ→α相变。
4、4J29晶粒度:标准规定深冲态带材的晶粒度应不小于7级,小于7级的晶粒不得超过面积的10%。厚度小于0.13mm的带材估计平均晶粒度时,沿带材厚度方向晶粒个数应不少于8个。
冷应变率为60%~70%的厚的带材,在表4-1所示温度下退火1h,空冷后,按YB 027-1992附录A评级,其晶粒度见表4-1。
表4-1[1,2]
退火温度/℃ |
675 |
700 |
750 |
800 |
900 |
1000 |
1100 |
1200 |
晶粒度级别 |
开始再结晶 |
>10 |
>10 |
10 |
7.5 |
5.0 |
4.0 |
3.0 |